1. 1. Attacks Matrix
    ❱
    1. 1.1. Introduction
    2. 1.2. How to Contribute
    3. 1.3. Q&A
  2. 2. Tactics
    ❱
    1. 2.1. Reconnaissance
      ❱
      1. 2.1.1. Gather RAG-Indexed Targets
      2. 2.1.2. Search Victim-Owned Websites
      3. 2.1.3. Search for Victim's Publicly Available Research Materials
      4. 2.1.4. Search for Victim's Publicly Available Code Repositories
      5. 2.1.5. Search Application Repositories
      6. 2.1.6. Active Scanning
    2. 2.2. Resource Development
      ❱
      1. 2.2.1. Commercial License Abuse
      2. 2.2.2. Obtain Capabilities
      3. 2.2.3. LLM Prompt Crafting
      4. 2.2.4. Publish Poisoned Datasets
      5. 2.2.5. Publish Hallucinated Entities
      6. 2.2.6. Establish Accounts
      7. 2.2.7. Acquire Infrastructure
      8. 2.2.8. Acquire Public ML Artifacts
      9. 2.2.9. Develop Capabilities
      10. 2.2.10. Publish Poisoned Models
      11. 2.2.11. Poison Training Data
    3. 2.3. Initial Access
      ❱
      1. 2.3.1. RAG Poisoning
      2. 2.3.2. ML Supply Chain Compromise
      3. 2.3.3. Evade ML Model
      4. 2.3.4. Retrieval Content Crafting
      5. 2.3.5. User Manipulation
      6. 2.3.6. Retrieval Tool Poisoning
      7. 2.3.7. Phishing
      8. 2.3.8. Compromised User
      9. 2.3.9. Guest User Abuse
      10. 2.3.10. Valid Accounts
      11. 2.3.11. Web Poisoning
      12. 2.3.12. Exploit Public-Facing Application
    4. 2.4. ML Model Access
      ❱
      1. 2.4.1. Full ML Model Access
      2. 2.4.2. AI Model Inference API Access
      3. 2.4.3. ML-Enabled Product or Service
      4. 2.4.4. Physical Environment Access
    5. 2.5. Execution
      ❱
      1. 2.5.1. LLM Plugin Compromise
      2. 2.5.2. LLM Prompt Injection
      3. 2.5.3. Command and Scripting Interpreter
      4. 2.5.4. User Execution
      5. 2.5.5. Off-Target Language
      6. 2.5.6. System Instruction Keywords
    6. 2.6. Persistence
      ❱
      1. 2.6.1. RAG Poisoning
      2. 2.6.2. Thread Infection
      3. 2.6.3. Resource Poisoning
      4. 2.6.4. LLM Prompt Self-Replication
      5. 2.6.5. Backdoor ML Model
      6. 2.6.6. Memory Infection
      7. 2.6.7. Poison Training Data
    7. 2.7. Privilege Escalation
      ❱
      1. 2.7.1. LLM Plugin Compromise
      2. 2.7.2. LLM Jailbreak
      3. 2.7.3. Off-Target Language
      4. 2.7.4. System Instruction Keywords
      5. 2.7.5. Crescendo
    8. 2.8. Defense Evasion
      ❱
      1. 2.8.1. Blank Image
      2. 2.8.2. Instructions Silencing
      3. 2.8.3. Distraction
      4. 2.8.4. Evade ML Model
      5. 2.8.5. False RAG Entry Injection
      6. 2.8.6. LLM Prompt Obfuscation
      7. 2.8.7. ASCII Smuggling
      8. 2.8.8. Conditional Execution
      9. 2.8.9. LLM Jailbreak
      10. 2.8.10. Delayed Execution
      11. 2.8.11. Indirect Data Access
      12. 2.8.12. URL Familiarizing
      13. 2.8.13. LLM Trusted Output Components Manipulation
      14. 2.8.14. Off-Target Language
      15. 2.8.15. Citation Manipulation
      16. 2.8.16. Citation Silencing
      17. 2.8.17. System Instruction Keywords
      18. 2.8.18. Crescendo
    9. 2.9. Credential Access
      ❱
      1. 2.9.1. Unsecured Credentials
      2. 2.9.2. RAG Credential Harvesting
      3. 2.9.3. Retrieval Tool Credential Harvesting
    10. 2.10. Discovery
      ❱
      1. 2.10.1. Discover ML Model Family
      2. 2.10.2. Discover LLM Hallucinations
      3. 2.10.3. Whoami
      4. 2.10.4. Discover LLM System Information
      5. 2.10.5. Failure Mode Mapping
      6. 2.10.6. Discover ML Model Ontology
      7. 2.10.7. Discover ML Artifacts
      8. 2.10.8. Discover AI Model Outputs
      9. 2.10.9. Embedded Knowledge Exposure
      10. 2.10.10. Tool Definition Discovery
      11. 2.10.11. Discover System Prompt
      12. 2.10.12. Discover Special Character Sets
      13. 2.10.13. Discover System Instruction Keywords
    11. 2.11. Lateral Movement
      ❱
      1. 2.11.1. Shared Resource Poisoning
      2. 2.11.2. Message Poisoning
    12. 2.12. Collection
      ❱
      1. 2.12.1. User Message Harvesting
      2. 2.12.2. Memory Data Hording
      3. 2.12.3. Data from Information Repositories
      4. 2.12.4. ML Artifact Collection
      5. 2.12.5. Thread History Harvesting
      6. 2.12.6. RAG Data Harvesting
      7. 2.12.7. Retrieval Tool Data Harvesting
      8. 2.12.8. Data from Local System
    13. 2.13. ML Attack Staging
      ❱
      1. 2.13.1. Verify Attack
      2. 2.13.2. Create Proxy ML Model
      3. 2.13.3. Backdoor ML Model
      4. 2.13.4. Craft Adversarial Data
    14. 2.14. Command And Control
      ❱
      1. 2.14.1. Public Web C2
      2. 2.14.2. Search Index C2
    15. 2.15. Exfiltration
      ❱
      1. 2.15.1. Exfiltration via ML Inference API
      2. 2.15.2. Exfiltration via Cyber Means
      3. 2.15.3. Web Request Triggering
      4. 2.15.4. Write Tool Invocation
      5. 2.15.5. Image Rendering
      6. 2.15.6. LLM Data Leakage
      7. 2.15.7. Granular Web Request Triggering
      8. 2.15.8. Clickable Link Rendering
      9. 2.15.9. LLM Meta Prompt Extraction
      10. 2.15.10. Granular Clickable Link Rendering
    16. 2.16. Impact
      ❱
      1. 2.16.1. Mutative Tool Invocation
      2. 2.16.2. Evade ML Model
      3. 2.16.3. Cost Harvesting
      4. 2.16.4. Denial of ML Service
      5. 2.16.5. Spamming ML System with Chaff Data
      6. 2.16.6. External Harms
      7. 2.16.7. Erode ML Model Integrity
      8. 2.16.8. Erode Dataset Integrity
      9. 2.16.9. LLM Trusted Output Components Manipulation
      10. 2.16.10. Citation Manipulation
      11. 2.16.11. Citation Silencing
  3. 3. Procedures
    ❱
    1. 3.1. Google Gemini: Planting Instructions For Delayed Automatic Tool Invocation
    2. 3.2. Financial Transaction Hijacking With M365 Copilot As An Insider
    3. 3.3. Microsoft Copilot: From Prompt Injection to Exfiltration of Personal Information
    4. 3.4. ChatGPT and Gemini jailbreak using the Crescendo technique
    5. 3.5. Copilot M365 Lures Victims Into a Phishing Site
    6. 3.6. GitHub Copilot Chat: From Prompt Injection to Data Exfiltration
    7. 3.7. Data Exfiltration from Slack AI via indirect prompt injection
    8. 3.8. spAIware
    9. 3.9. Microsoft Copilot Purview Audit Log Evasion and DLP Bypass
    10. 3.10. Exfiltration of personal information from ChatGPT via prompt injection
  4. 4. Platforms
    ❱
    1. 4.1. ChatGPT
    2. 4.2. GitHub Copilot
    3. 4.3. Gemini
    4. 4.4. Microsoft Copilot for M365
    5. 4.5. SlackAI
    6. 4.6. Microsoft Copilot
  5. 5. Mitigations
    ❱
    1. 5.1. Information Flow Control
    2. 5.2. LLM Activations
    3. 5.3. URL Anchoring
    4. 5.4. Index-Based Browsing
    5. 5.5. Spotlighting
    6. 5.6. Content Security Policy
  6. 6. Entities
    ❱
    1. 6.1. Riley Goodside
    2. 6.2. Ahmed Salem
    3. 6.3. Tamir Ishay Sharbat
    4. 6.4. Johann Rehberger
    5. 6.5. Ronen Eldan
    6. 6.6. Pliny
    7. 6.7. Jonathan Cefalu
    8. 6.8. Lana Salameh
    9. 6.9. Mark Russinovich
    10. 6.10. Ayush RoyChowdhury
    11. 6.11. Michael Bargury
    12. 6.12. Gregory Schwartzman
    13. 6.13. PromptArmor
    14. 6.14. Gal Malka
    15. 6.15. Simon Willison
    16. 6.16. Dmitry Lozovoy

GenAI Attacks Matrix

Tactics

  • Collection
  • Resource Development
  • Execution
  • Discovery
  • Initial Access
  • Impact
  • Exfiltration
  • Persistence
  • Credential Access
  • Defense Evasion
  • ML Attack Staging
  • Command And Control
  • Lateral Movement
  • Privilege Escalation
  • ML Model Access
  • Reconnaissance